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Fringe analysis is a critical issue that is worthy of 
study in optical three-dimensional measurement. If 
noise, carrier signals or background of fringe pattern 
can be recovered accurately with fringe analysis, phase 
retrieval can be achieved accurately and easily. Tradi-
tional Fourier-based methods of fringe analysis include 
S transform[1], windowed Fourier transform[2], etc. These 
methods are constrained by Heisenberg uncertainty 
theory and limited to process the fringe pattern with 
slow change in phase. Empirical mode decomposition 
(EMD) is another kind of fringe analysis method un-
constrained by the above limitation. It has been testi-
fied to be effective in detrending[3], denoising[4] or other 
such fringe analyses[5]. However, EMD subjects to the 
restriction of sampling or interpolation, which leads 
to over-decomposition if selected improperly. In addi-
tion, mode mixing is another tricky problem of EMD, 
which is caused by the intermittent noise. The existing 
of mode mixing may confuse the physical meaning of 
the obtained intrinsic mode function (IMF). To address 
this problem, the ensemble EMD (EEMD) method is 
introduced and even being expanded in bi-dimensional 
space to analyze fringe pattern[6]. EEMD shifts the en-
semble of white noise-added signal and treats the mean 
as final result[7]. However, this method is empirical, as 
the ensemble number and the white noise have to be 
selected manually. Moreover, a large number of itera-
tions make EEMD very time-consuming and unsuitable 
to use practically[6]. 

Local mean decomposition (LMD) is a novel algo-
rithm, which owns good demodulation capability in 
analyzing complicated signals[8]. But, LMD is also re-
stricted by the mode mixing problem. In this paper,  
we introduce and modify the LMD method for adap-
tive fringe analysis. The smoothed local mean of LMD 
outperforms the cubic spline interpolation of EMD in 

 reducing iterations and restraining border effect. A 
high-frequency signal is designed and added into the 
original signals to form an envelope of continuous ex-
trema during the iteration, and then the original noise 
and the added signal both may be separated out with-
out other mixed modes. With the present modified 
LMD (MLMD), the physical meaning of each separated 
product function (PF) is much clear. The carrier sig-
nals can be extracted accurately, which contribute fur-
ther to accurate phase retrieval. 

One row signal of fringe pattern is expressed as 
 0( ) ( ) ( )cos[2 ( )] ( )I x A x B x f x f x n xπ= + + + , (1)
where A(x) represents the background, B(x) the 
 amplitude modulation, f0 and f(x) are the modulated 
frequency and phase, respectively, and n(x) is noise. 
Equation (1) shows that the signal is amplitude–fre-
quency modulated, and this characteristic exactly con-
forms to the decomposition mechanism of LMD. The 
details of LMD can be obtained from a study conducted 
by Smith[8]. After LMD, the signal can be decomposed 
into a set of PFs which are sorted from high frequency 
to low, representing the noise, carrier signals and back-
ground orderly. LMD is an iterating process based on 
analysis of extrema of signals. The mode mixing prob-
lem appears when the extrema of intermittent noise 
and fundamental components are mixed[7].  Moreover, 
mode mixing in the first two PFs gradually affects the 
following PFs. To overcome this problem, we have de-
signed a high-frequency signal and added it as “noise” 
into original signals in order to uniformize all the noise. 
The high-frequency “noise” n’(x) is designed as
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fringe pattern and the SNR is 13.2 dB. The straight 
line in Fig. 1 denotes the 200th row signal and the 
black box shows a random local area.

To prove the performance of MLMD, we process the 
200th row signal with EMD, LMD, EEMD and MLMD.  
Figure 2(a) shows the original signal. Figures 2(b) and 
(c) are the results of EMD and LMD, respectively. 
We can observe that mode mixing appears in both 
the methods, but the number of IMFs in Fig. 2(b) is 
much more than the number of PFs in Fig. 2(c), which 
means that the effect of mode mixing is much heavier 
in EMD than LMD. Figure 2(d) shows the result of 
EEMD whose ensemble number is 200, and the ratio of 
standard deviation between the white noise and origi-
nal signal is 0.25. The result of MLMD is shown in Fig. 
2(e). It shows that mode mixing is relieved not only in 
high-frequency PFs but also in low-frequency PFs.

The carrier signal of the 200th row is recovered by 
removing the first component and the residue for each 
result in Fig. 2. The recovered result is compared with 
the true value, which is shown in Fig. 3. EEMD and 
MLMD perform better than the other two methods, 

where a1(x) and f1(x) are the amplitude-modulated 
(AM) function and frequency-modulated (FM) function 
of PF1, respectively. ā1 is the weighted mean of a1(x),  

1f  is the approximation of f1(x) got by energy-weighted 
mean. 1f  is multiplied by 2 to ensure that the frequen-
cy of n’(x) is at least twice larger than the frequency of 
fundamental components, because in a study conducted 
by Rilling and Flandrin[9], a cutoff frequency ratio of 
two-tones signal is analyzed to ensure the two tones 
being separated thoroughly by EMD, i.e., the frequency 
ratio cannot be between [0.5] and [2]. The conclusion 
is also suitable for LMD because it is still an extrema-
based iterative approach.

The procedure of MLMD can be summarized as 
 follows:
1. Apply LMD to original signal I(x) to get the PF1: 
① Between each two adjacent extrema of I(x), calcu-

late their mean value denoted as mpk(x) and the average 
of their peak-to-peak value as apk(x), where p denotes 
the number of PFs and k is the number of iterations to 
get a PF(x).
② With moving average method, mpk(x) and apk(x) are 

smoothed to get � pkm x( )  and ãpk(x), respectively. The 
length of the moving average is weighted by the largest 
distance of two adjacent extrema.
③ Let 11 11( ) ( ) - ( )h x I x m x= �  and 11 11 11( ) ( ) / ( )s x h x a x= � .  

Compute ã12(x) of s11(x) and judge whether ã12(x) = 1.  
If so, go to step ④. Otherwise, repeat steps ①  – ② 
k1 times until 

1 1 11 1 1( ) ( ) / ( )k k ks x h x a x  is a pure flat FM 
signal, i.e., 

11 ( )ks x  fluctuates between [-1] and [1]. And 

11 ( )ks x  can be written as 
11 1( ) cos ( )ks x xω= , where, 

1( )xω  is the instantaneous phase. Also, the instan-
taneous frequency is obtained by 1 1( ) ( ) /f x d x dxω= . 
Then, the instantaneous amplitude can be obtained as 

11 11 12 1( ) ( ) ( )... ( )ka x a x a x a x= � � � . 
④ Multiply the AM function and the FM function, 

the first PF is obtained as 
11 1 1PF ( ) ( ) ( )kx a x s x= × , where 

k1 is the iteration number.
2. Construct the high-frequency signal by Eq. (2) and 
add it to ( )I x  to get the new signal ( )newI x .
3. Take ( )newI x  as ( )I x  and repeat steps ① – ④, 
so a new first PF is obtained as 1PF ( )new x . Let 

1 1( ) ( ) - PF ( )new
newr x I x x= , and r1(x) is a smoothed ver-

sion of ( )newI x . Repeat the similar procedure us-
ing steps ① – ④ on r1(x) to get PF2(x). Let 

2 1 2( ) ( ) - PF ( )r x r x x=  and repeat steps ① – ④ on r2(x) 
to get PF3(x), etc. The iteration is continued until the 
residue ( )pr x  is a monotonic function with no more 
oscillations. Finally, ( )newI x  can be reconstructed by 

1
2

( ) PF ( ) PF ( ) ( )
p

new
new j p

j
I x x x r x

=

= + +∑ .

Figure 1 shows the simulation (1020 × 1020) of fringe 
pattern. The modulated frequency is 0.05 (1/pixel) and 
the background is simulated as constant 0.5. The fringe 
is modulated 7 times of the peaks function in order to 
deform more seriously. Random noise is added into the 

Fig. 1. Simulation of fringe pattern.

 

 

 

 

 

(a)

(b)

(c)

(d)

(e)

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9

1
2
3
4
5

Fig. 2. Image description of (a) the 200th row signals in Fig. 
1, (b) IMFs obtained by EMD, (c) PFs obtained by LMD, 
(d) IMFs obtained by EEMD and (e) PFs obtained  using the 
proposed MLMD.
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EEMD, where EEMD needs about 4 hours to process 
the whole pattern (1020 × 1020) while MLMD just re-
quires 7 minutes with the same computer. The reason 
is that EEMD needs addition of white noise hundreds 
of times,  which means decomposition using the EMD 
method hundreds of times, but MLMD just needs only 
one time adding of the designed “noise”.

Real experiment is performed on a fringe pattern of 
foam board in Fig. 5(a), where the straight line denotes 
the 200th row. The carrier signals of the whole map 
are recovered adaptively, which is shown in Fig. 5(b).  
It shows that the detailed information is maintained 
well. The 200th row of original signal and the de-
noised signal obtained by MLMD are compared in Fig. 
5(c), which indicates the good denoising ability of the 
 method. Figure 5(d) is the carrier signal with noise and 
background removed. A comparison of the wrapped 
phase is also given in Fig. 6. The presented MLMD 

while noise remains high as shown in Fig. 3(c). We also 
recover the carrier signals of whole fringe pattern. And, 
the obtained result and the ideal values are subtracted 
to estimate the errors. The mean error and the stan-
dard deviation of EEMD are -0.0015 and 0.0376, while 
for the MLMD, they are 9.4 × 10-4 and 0.0388.

We retrieve the wrapped phase with Hilbert trans-
form on the recovered carrier signals. Figure 4 shows 
the wrapped phase of the local area in Fig. 1. For com-
parison, we add another two common methods in phase 
demodulation, i.e., the Fourier transform (FT) method 
and the ridge of wavelet transform (RWT) method. 
The results of these two methods are inferior to the 
other four methods because they are weak in process-
ing the fringe pattern which deforms dramatically, as 
shown in Fig. 1. The wrapped phase is unwrapped by 
quality-guided method and the errors are computed as 
the difference of the obtained phase and the true phase. 
The resulting data prove that EEMD and MLMD are 
much better among these methods, which fits the re-
sult shown in Fig. 4. The mean error and standard de-
viation of errors are -0.0036 and 0.2383 for EEMD, 
respectively, and -0.0032 and 0.2388 for MLMD, re-
spectively. Both the methods are accurate, but MLMD 
is more automatic and time-saving compared with 

 6 

 

 

 

 

 

(a)

(b)

(c)

(d)

(e)

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6

1
2
3
4
5
6
7
8
9

1
2
3
4
5  

Fig. 2. Image description of (a) the 200th row signals in Fig. 1, (b) IMFs obtained by 
EMD, (c) PFs obtained by LMD, (d) IMFs obtained by EEMD and (e) PFs obtained  

using the proposed MLMD. 
The carrier signal of the 200th row is recovered by removing the first component 

and the residue for each result in Fig. 2. The recovered result is compared with the 

true value, which is shown in Fig. 3. EEMD and MLMD perform better than the other 

two methods, while noise remains high as shown in Fig. 3(c). We also recover the 

carrier signals of whole fringe pattern. And, the obtained result and the ideal values 

are subtracted to estimate the errors. The mean error and the standard deviation of 

EEMD are 0.0015 and 0.0376, while for the MLMD, they are 9.4 × 10 4 and 0.0388. 
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Fig. 3. Comparison of the carrier signals between the true values (red line) and the result 
obtained (blue line) using (a) EMD, (b) LMD, (c) EEMD and (d) MLMD. 

We retrieve the wrapped phase with Hilbert transform on the recovered carrier 
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Fig. 3. Comparison of the carrier signals between the true val-
ues (red line) and the result obtained (blue line) using (a) 
EMD, (b) LMD, (c) EEMD and (d) MLMD.
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Fig. 4. The wrapped phase of local area obtained by (a) FT, 
(b) RWT, (c) EMD, (d) LMD, (e) EEMD and (f) MLMD.
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Fig. 5. (a) The fringe pattern of foam board, (b) the whole map 
of recovered signal, (c) comparison of the 200th original signal 
(red line) and the denoised signal (blue line) by MLMD and 
(d) the recovered signal of the 200th row.
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Fig. 6. The wrapped phase obtained by (a) FT, (b) RWT, (c) 
EMD, (d) LMD, (e) EEMD and (f) MLMD.
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exhibits the good performance on accuracy, processing 
speed, etc. In the present method, the definition of in-
stantaneous frequency and amplitude are much reason-
able. The designed signal results in the similar charac-
ter with the original noise, so all the “noise” is collected 
together to be completely separated as 1PF ( )new x . But, 
it is noteworthy that if noise is so small to be ignored, 
step 2 is not needed. This case is rare. But if so, the 
PF1 represents the fundamental component purely and 
carrier signals can be recovered only by removing the 
background, namely the residue.
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